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Fermionic Entropy in Kerr Black Hole
Space-Time Background

You-Gen Sher>** and Zong-Yi Chengt

Received January 18, 2000

Making use of brick-wall model proposed by 't Hooft, we have obtained the free energy
and the entropy of Fermionic field and given out their expressions under the Kerr space—
time background.

1. INTRODUCTION

In theoretical physics, black hole thermodynamics is an enigma. It is also a
junction of general relativity theory, quantum mechanics, and statistics physics.

Since Bekenstein and Hawking proposed in the 1970s that black hole entropy
is proportional to its horizon area (Bekenstein, 1972, 1973, 1974; Hawking, 1975;
Kallosh et al, 1993), people have been exploring the statistical origin of black
hole entropy. One of the methods most used to study the statistical origin of black
hole entropy is the brick-wall method proposed by 'tHooft (1985). Making use of
this method, 'tHooft investigated the free scale field’s statistical characteristic in
Schwarzshild black hole background, obtained an expression of entropy in terms
of the horizon area, and verified that the entropy is proportional to its horizon
area. What is more, the entropy can be writterbas % when the cutoff factor
satisfies a certain condition. When the cutoff factor approaches zero, the entropy
is divergent. He thought that this kind of divergence is caused by going to infinite
state density at the vicinity of the horizon.
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Another method to study the statistical origin of black hole entropy, which
is actually equivalent (Callan and Wilczek, 1994; Kabat and Strassler, 1994) to
the brick-wall model, was adopted by Bombetlal. (1986) and Srednicki (1993).
Starting with the one-loop action of a scalar massive field and making use of Eu-
clidean path integration of Gibbons and Hawking (1977), Solodukhin (1995a,b)
studied the quantum corrections to the black hole entropy. In quantum mechan-
ics, the geometrical entropy satisfies following assumptions: the entropy will be
called Boson entropy if the particle is a Boson that obeys Bose—Einstein sata-
tistical distrubution; the entropy will be called Fermionic entropy if geometri-
cal entropy in quamtum mechanics is calculated by means of counting Fermi
state.

Since the mid of 1990s, many researchers have been interested in the questions
of black hole entropy (Brown, 1995; Carlip and Teitelboim, 1995; Carlip, 1995;
Cognola and Lecca, 1998; Cvetic and Youn, 1996; de Alwis and Ohta, 1995;
Demerset al., 1995; Fileet al.,, 1994; Ghosh and Mitra, 1994, 1995; Gubseal.,

1996; Hawkinget al., 1995; Ichinose and Satoh, 1995; iLarsen and Wilczek, 1996;
Jacobsoret al., 1995; Kabaget al., 1995; Kimet al., 1997; Larsen and Wilczek,
1995; Lee and Kim, 1996; Lee and Kim, 1996; Leteal., 1996; Leeet al., 1996;

Mann and Solodukhin, 1996; Pinto and Soares, 1995; Russo, 1995; Shen and
Chen, 1998, 1999a,b, 1999; Shenal, 1997; Solodukhin, 1995; Solodukhin,
1996; Solodukhim, 1995a,b; Susskind and Uglum, 1994; Teitelboin, 1995; Zhou
et al, 1995). But up to now, entropy of free scale field was mainly studied by
the people; rather few studied the entropy of Dirac’s spinor field; there is only a
few research for its lower dimenssion field. So it is nescessary to further study the
entropy of a four-dimensional Dirac field.

In this paper, making use of 'tHooft’s brick-wall model in four-dimensional
Dirac spinor field, we obtained the free energy and the entropy of Fermionic field,
and gave their expressions in the Kerr black hole space-time background.

2. DIRAC FIELD EQUATIONS

In curved space-time, the spinor representations of massless Dirac equations
can be expressed as Teukolsky (1973)

VasP" =0, )
VasQA =0, )

where PA and Q* are 2 two-components spinor§ug is the spinor covariant
differentiation; Vg = UZBV/L, "ZB are 2x 2 Hermitian matrices; they satisfy
00 500 = €AcepD; €ac andegp are the anti-symmetric Levi—Civita symbols,

V,. is covariant differentiation.
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It is well known that the metric for Kerr black hole is Kerr (1963)

3 2Mr] ., 2, , [2Mrasirte ,
dSZ_[l E]olt Adr > do [ S +(r* +a°

r

aM
x Sin0 dg? + T 2 Sir dt do, 3)

where
¥ =r? 4+ a?cog¥,
Ay =r?+a? — 2Mr,
J
Mu
whereM anda are the mass of Kerr black hole and angular momentum per unit

mass respectively.
Choose the null tetrad as follows Chandrasekhar (1963):

a =

1
I* = —(r?+a? A, 0,a),
Ay

1
nlt = _(r2 + a21 _Arv Oya)a

M= v, 0, 1, ,
m =75 <|a5| S|n9)

m* = J§1/7< iasim, 0, 1,— |Ir\9> (4)

wherep =r +iacosd, p* =r —iacod. Itis easily seen that the tetrad in (4) is
a null vector, that is,

" =n,n* =m,m* =m,m* =0, (5)
satisfies a pseudo-orthogonality relationship, that is,
[,n* =—mm* =1,

[,m*=1,m"=n,m"=n,m" =0, (6)
and satisfies metric conditions, that is,

O = 0y + 0yl —mym, —m,m,. @

Suppose spinor base$ = §2; here,Ais the index of spinor component and
a is the index of spinor basey anda take the values O or 1.
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The covariant differentiatioiv,g&” for an arbitray spinog” can be ex-
pressed as the component along the direction of spinordfadeat is,

E2 6P EEV ABES = Vabs® = 04 + T 67, (8)
wheredy;, is usual spinor differentiation, arfdf; ; is the spinor coefficient.
Let
9 =19, =D,

013 = N9, = A,
do1 = M*9, =6,
d1p = M0, = 3, 9)
the Dirac Egs. (1) and (2) can be reduced to four coupled equations as follows:
(D+e—p)Fi+ @ +7-a)F2=0,
A+u—y)Fo+(@E+B—-1)F1=0,
(D+e" —p)G2—(§+ 7" —a”)G1 =0,
(A+u" —yNG1—(6+B —y)G2=0, (10)

whereFy, F;, G1, andG; are the spinor quantities of which there are four compo-
nents, among thenf; = P°, F, = P, G; = Q*, andG, = —Q% «, 8, 7, €, 1,

7, p, andr, etc., are the Newman—Penrose symbols Newman and Penrose (1962),
anda*, B*, etc., are the conjugates of thep, etc., and the relationship between
them and the null tetrad is

1 _ o

o = E(IWn"m” — my;,m“m"),
1 _

B = E(IWn“m” — my,m*m”),
1 _

y = E(IWn"n” — my;,m“n"),

&= %(I#;vnl‘l” —m,.,m“l"),

T = —Ng,,mm’,

P = Iwm"ﬁ”,

T =1,,m"n". (12)

After atedious but straightforward calculation, we have Chandrasekhar (1963)

p:——*,
0
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__ cotd
ﬂ_zﬁp—'
_ iasinf
V200
_iasinf
_ T
Ay
M=-22’5*,
r—m
y=u+ oy
a=m—p"
e=0.

Let
Fp = e 'Mefy(r, ),
Fo = e '“tHiM™fy(r, 0),
G = e Moy, (r, 6),
G, = e ' “HiMeg,(r, 6).

Then (10) becomes
1
(Do+ ;) f1+ f_ ——L12f2 =0,

Ay

1 1
( 0 0 (07] \/ZO 1/291

A 1 1.
ipl/zgl +—= NeTS (El/z - pla sm9)92 =0,

where
ik —-M
Dyp=0 ——+2n ,
n r Ar + Ar
a4 ik +2n M
A Ar

Ly =9y — H + coto,

1 1

1013

(12)

(13)

(14)
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L =85+ H +ncotd,
K =(r?+a%w—am,
H = awsing — % (15)
Making the following transformation
Us(r, 0) = p™ fa(r, 0),
Ua(r, 0) = fa(r, 0),
Vi(r, 0) = au(r, 0),
Vao(r, 0) = pQa(r, 6), (16)

(14) becomes
DoUq + ! L1U, =0
oY1 Nz 1/2Y2 =Y,
ArD}, Uz — V2L1,U; =0,

1
DoVz — —=L{,V1 = 0,

V2
+ f —
ArDl/Zvl + 2£1/2V2 =0. (17)

Let
Ui(r, 6) = R_1/2(r)S_1/2(6),
Ua(r, 6) = Ry1/2(r)Sy1/2(0),
Vi(r, 8) = Ry1/2(r)S-1/2(6),
Va(r, 6) = Ro1/2(r)Si/2(6). (18)
Having substituted Egs. (18) into Egs. (17) and separated the variables, we have
A DF,DoR 172 — MR 12 = 0,
DoAr Dy R 172 — ARi12 =0,
L{pL12Smp2 + 4282 = 0,

Eir/zﬁf/zal/z +1%S.12 =0, 19)

where? is the constant of separating variables. Substitution of Egs. (18) into
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Egs. (19) gives
2 K? . o
Ar 0 R,1/2+(I' — M)g; R_1/2 + . —2ior +1iK

r r

-M
—~ AZ] R4 =0.

(20)
K2
Ard2R12 + 30 — M)3 Ry1j2 + [A— + 2iwr
r
- M
_ik ! —A2+1}R+1/2=0. 1)
r
1 m?2 mcosH
—— 9y SiNO 3y — + 22 +| = coto F ———,
[sm@ ¢ 7 SirPe } Sz [ sirfg
— ——_ T aw cosh — a’w’ s + 2ama)] =0. 22
2sitg T o @ St172 (22)

3. THE FERMIONIC ENTROPY

Because the Dirac wave function has four components and the entropy is
equal to the sum of the entropies of every component, to obtain the entropy of
Dirac field, we have to calculate the entropy of its every component and then add
them together. First, let us calculate the entropy offheomponent. Using brick-
wall model, and assuming that the wave function vanishes near horizon within a
range ofh (h is a positive infinite decimal), that is,

Fi(r) =0 (23)

whenr <r, + h, the wave function would also vanish away from horiZon
that is,

Fi(r)=0 (24)

whenr > L.r. = M + +/MZ2 — aZ is the event horizon of Kerr black holb,is
the ultraviolet cutoff factorl is the ultrared cutoff factor, and > r .

The radial componerfR_y,, of F; satisfies (20).

Let R 31, = €210, based on the WKB approximation; it follows that

K2
K2 = Arl[— — 10+ 1)}. (25)
Ay
wherek; = 9, Wy(r), it is radial wave number.

Suppose that the studied Dirac field is in the vacuum state of Hartle—Hawking
(Hartle and Hawking, 19962 and the temperature of Dirac field is the Hawking

temperaturely = ﬁﬂ m According to the canonical ensemble theory,
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the free energy of Fermi system is:
BEL = —%In(1+ e ?*), (26)

whereg is the inverse of Hawking temperature. In a semiclassical treatment, the
visible energy state is continuous distribution, and the sum can be changed to
integration:

> — /Ooo do g(w), (27)

whereg(w) is the state densitg(w) = %, I'(w) is the microcosmic state num-
ber, that is,

M) =Y n(wl,m), (28)
I,m
wheren, is a nonnegative integer number, and
L
nm= / Ka(r, I, m)dr, (29)
ry+h

Taking sum for angle quantum number is also treated as integration, and it is
required thaK(r, |, m) > 0 during integration process, and then we have

F(w):/(ZI +1)d|-%/K1dr, (30)

and the free energy can be expressed as

L
BE; = g/dl @ +1)/dw (1+eﬁ<w—m9°>)‘l./ Kidr,  (31)

ry+h

whereQg = —S’ih:r+ is the rotation angle velocity of Dirac field. It follows that
Py

w31 (r2+a?)? 7 am(r? +a?)?

Ej = ———— . —. .

LT T18m B (o —r)2 | 60ngt (r.—r_)2
7% a?m?(r? + a?) N 773 a’m?3
60hg*  (rp —r_)? 1804 (ry —r_)?

9 ¢ 9 1) 5 3
L2 A Qn -

1673 hp OO gz e E MO T
3 (B g 1 7w (rz2 +a??

O (1)
2, a2
7 2 442 Fit@a T 3502 1
- .a‘m . a’m’Qs . —
2ng? NS Y N

B L I Y
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21 1z (F2+2%)% 21 s s 5 [2+a?
+nhﬁ -¢(1)-am QO.(F+—T_)2_71hﬂ ~§(1)-am£20~(++r_)2
2 1 1 31 (rz2 +a??3
— — )-admbd. —— T _— . My —+— 7
Tarhp (W AR T T rg (O MR Ty
LT g AP 2L oo, (R el
ehpz "0 T2 " 3rng CW M s (82
Using the relationship between free energy and entropy
oE
S=p2—, 33
ey (33)
and taking the ultraviolet cutoff factbr= % ('tHooft, 1985), the entropy becomes
7 A
S = 57“ + O(¢ (1)) + finite. (34)

where¢(n) is the Riemanry function, A, = 4r(r? + a?) is the area of event
horizon.

In the following, we calculate the entropy fét component making use of
brick-wall model and taking the same cutoff factor described above, that is, when
r<ry+h,r>L>r,,itisrequired that

F, =0. (35)

Because the radial componeRt,, of F; satisfies Eq. (21), in the same way we
may letR, 1/, = €2, and then substitute it into Eq. (21), and having used WKB
approximation, we have

KZ
K3(r) = A‘l[Z —1(+1)+ 1]. (36)

whereK, = 9, Wx(r) is the radial wave function. From this, the free energy cor-
responding td~; is

L
BE, = —é/dl 2 +1)/dw (1+eﬂ<w—m90>)‘1/ Ky dr- (37)
T ry+h
Calculating (37), we have found that there is the same expressioB,for
andE;.

Using (33) and takingy = %, the entropy becomes

7 A -
S=3 7“ + 0(¢(1)) + finite. (38)
In the same way, we can calculate the entropie§ofand G, respectively. It
follows that the free energy and entropy®f and G, are respectively equal to
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the ones of; andF,, so the Fermi entropy in Kerr black hole background is:

S= 2}: S = ; : % + O(¢ (1)) + finite. (39)

4. DISCUSSION AND CONCLUSION

Whena = 0, it follows that2g = 0. Because there are factorsaofind 2
for the second and third terms in (39), so wlees 0, the second and third terms
are all equal to zero, and only the first te%ﬁﬂ remains for (39). The first term

%% of (39) is just that of Fermi entropy of Schwarzschild black hole; it is equal

to the Bose entropy multiplied bg/of Schwarzschild black hole. This conclusion
is consistent with the one obtained by functional analysis in de Alwis and Ohta
(1995).

Thus for the general Kerr black hole, the expression for fermionic entropy is

7 Ay -
S= > 7 + O(¢ (1)) + finite.

This conclusion can be extended to Kerr-Newman black hole and Kerr—
Newman—Kasuya black hole.
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