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Fermionic Entropy in Kerr Black Hole
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Making use of brick-wall model proposed by ’t Hooft, we have obtained the free energy
and the entropy of Fermionic field and given out their expressions under the Kerr space–
time background.

1. INTRODUCTION

In theoretical physics, black hole thermodynamics is an enigma. It is also a
junction of general relativity theory, quantum mechanics, and statistics physics.

Since Bekenstein and Hawking proposed in the 1970s that black hole entropy
is proportional to its horizon area (Bekenstein, 1972, 1973, 1974; Hawking, 1975;
Kallosh et al., 1993), people have been exploring the statistical origin of black
hole entropy. One of the methods most used to study the statistical origin of black
hole entropy is the brick-wall method proposed by ’tHooft (1985). Making use of
this method, ’tHooft investigated the free scale field’s statistical characteristic in
Schwarzshild black hole background, obtained an expression of entropy in terms
of the horizon area, and verified that the entropy is proportional to its horizon
area. What is more, the entropy can be written asS= Ah

4 when the cutoff factor
satisfies a certain condition. When the cutoff factor approaches zero, the entropy
is divergent. He thought that this kind of divergence is caused by going to infinite
state density at the vicinity of the horizon.
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Another method to study the statistical origin of black hole entropy, which
is actually equivalent (Callan and Wilczek, 1994; Kabat and Strassler, 1994) to
the brick-wall model, was adopted by Bombellet al. (1986) and Srednicki (1993).
Starting with the one-loop action of a scalar massive field and making use of Eu-
clidean path integration of Gibbons and Hawking (1977), Solodukhin (1995a,b)
studied the quantum corrections to the black hole entropy. In quantum mechan-
ics, the geometrical entropy satisfies following assumptions: the entropy will be
called Boson entropy if the particle is a Boson that obeys Bose–Einstein sata-
tistical distrubution; the entropy will be called Fermionic entropy if geometri-
cal entropy in quamtum mechanics is calculated by means of counting Fermi
state.

Since the mid of 1990s, many researchers have been interested in the questions
of black hole entropy (Brown, 1995; Carlip and Teitelboim, 1995; Carlip, 1995;
Cognola and Lecca, 1998; Cvetic and Youn, 1996; de Alwis and Ohta, 1995;
Demerset al., 1995; Fileet al., 1994; Ghosh and Mitra, 1994, 1995; Gubseret al.,
1996; Hawkinget al., 1995; Ichinose and Satoh, 1995; iLarsen and Wilczek, 1996;
Jacobsonet al., 1995; Kabatet al., 1995; Kimet al., 1997; Larsen and Wilczek,
1995; Lee and Kim, 1996; Lee and Kim, 1996; Leeet al., 1996; Leeet al., 1996;
Mann and Solodukhin, 1996; Pinto and Soares, 1995; Russo, 1995; Shen and
Chen, 1998, 1999a,b, 1999; Shenet al., 1997; Solodukhin, 1995; Solodukhin,
1996; Solodukhim, 1995a,b; Susskind and Uglum, 1994; Teitelboin, 1995; Zhou
et al., 1995). But up to now, entropy of free scale field was mainly studied by
the people; rather few studied the entropy of Dirac’s spinor field; there is only a
few research for its lower dimenssion field. So it is nescessary to further study the
entropy of a four-dimensional Dirac field.

In this paper, making use of ’tHooft’s brick-wall model in four-dimensional
Dirac spinor field, we obtained the free energy and the entropy of Fermionic field,
and gave their expressions in the Kerr black hole space-time background.

2. DIRAC FIELD EQUATIONS

In curved space-time, the spinor representations of massless Dirac equations
can be expressed as Teukolsky (1973)

∇AḂ PA = 0, (1)

∇AḂ QA = 0, (2)

where PA and QA are 2 two-components spinors;∇AB is the spinor covariant
differentiation;∇AḂ = σµAḂ

∇µ, σµ
AḂ

are 2× 2 Hermitian matrices; they satisfy
gµνσ

µ

AḂ
σ
µ

CḊ
= εACεḂḊ; εAC andεḂḊ are the anti-symmetric Levi–Civita symbols,

∇µ is covariant differentiation.
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It is well known that the metric for Kerr black hole is Kerr (1963)

ds2 =
[
1− 2Mr

6

]
dt2− 6

1r
dr2−6 dθ2−

[
2Mra sin2 θ

6
+ (r 2+ a2)

]
× sin2θ dϕ2+ 4Mra

6
sin2θ dt dϕ, (3)

where

6 = r 2+ a2 cos2θ ,

1r = r 2+ a2− 2Mr,

a = J

M
,

whereM anda are the mass of Kerr black hole and angular momentum per unit
mass respectively.

Choose the null tetrad as follows Chandrasekhar (1963):

lµ = 1

1r
(r 2+ a2,1r , 0,a),

nµ = 1

26
(r 2+ a2,−1r , 0,a),

mµ = 1√
2ρ̄

(
ia sinθ , 0, 1,

i

sinθ

)
,

m̄µ = 1√
2ρ̄?

(
−ia sinθ , 0, 1,− i

sinθ

)
, (4)

where ¯ρ = r + ia cosθ , p̄? = r − ia cosθ . It is easily seen that the tetrad in (4) is
a null vector, that is,

lµlµ = nµnµ = mµmµ = m̄µm̄µ = 0, (5)

satisfies a pseudo-orthogonality relationship, that is,

lµnµ = −mµm̄µ = 1,

lµmµ = lµm̄µ = nµmµ = nµm̄µ = 0, (6)

and satisfies metric conditions, that is,

gµν = lµnν + nµlν −mµm̄ν − m̄µmν . (7)

Suppose spinor basesζ A
a = δA

a ; here,A is the index of spinor component and
a is the index of spinor base;A anda take the values 0 or 1.
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The covariant differentiation∇AḂξ
A for an arbitray spinorξ A can be ex-

pressed as the component along the direction of spinor baseζ A
a , that is,

ζ A
a ζ

B
b ζ

c
C∇AḂξ

C = ∇aḃξ
c = ∂ȧḃξ

c + 0c
daḃξ

d, (8)

where∂aḃ is usual spinor differentiation, and0c
daḃ

is the spinor coefficient.
Let

∂00̇ = lµ∂µ ≡ D,

∂11̇ = nµ∂µ ≡ 1,

∂01̇ = mµ∂µ ≡ δ,
∂10̇ = m̄µ∂µ ≡ δ̄, (9)

the Dirac Eqs. (1) and (2) can be reduced to four coupled equations as follows:

(D + ε − ρ)F1+ (δ̄ + π − α)F2 = 0,

(1+ µ− γ )F2+ (δ + β − τ )F1 = 0,

(D + ε? − ρ?)G2− (δ + π? − α?)G1 = 0,

(1+ µ? − γ ?)G1− (δ̄ + β? − γ ?)G2 = 0, (10)

whereF1, F2, G1, andG2 are the spinor quantities of which there are four compo-
nents, among them,F1 = P0, F2 = P1, G1 = Q̄1̇, andG2 = −Q̄0̇; α, β, γ , ε, µ,
π , ρ, andτ , etc., are the Newman–Penrose symbols Newman and Penrose (1962),
andα?, β?, etc., are the conjugates of theα, β, etc., and the relationship between
them and the null tetrad is

α = 1

2
(lµ;νn

µm̄ν −mµ;νm̄
µm̄ν),

β = 1

2
(lµ;νn

µmν −mµ;νm̄
µmν),

γ = 1

2
(lµ;νn

µnν −mµ;νm̄
µnν),

ε = 1

2
(lµ;νn

µl ν −mµ;νm̄
µl ν),

π = −nµ;νm̄
µm̄ν ,

ρ = lµ;νm
µm̄ν ,

τ = lµ;νm
µnν . (11)

After a tedious but straightforward calculation, we have Chandrasekhar (1963)

ρ = − 1

ρ?
,
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β = cotθ

2
√

2ρ̄
,

π = ia sinθ√
2(ρ?)2

,

τ = − ia sinθ√
26

,

µ = − 1r

26ρ̄?
,

γ = µ+ r − M

26
,

α = π − β?,
ε = 0. (12)

Let

F1 = e−iωt+imϕ f1(r, θ ),

F2 = e−iωt+imϕ f2(r, θ ),

G1 = e−iωt+imϕg1(r, θ ),

G2 = e−iωt+imϕg2(r, θ ). (13)

Then (10) becomes (
D0+ 1

ρ̄?

)
f1+ 1√

2ρ̄?
L1/2 f2 = 0,

1r

26
D+1/2 f2− 1√

2ρ̄

(
L1+ 1

ρ̄?
ia sinθ

)
f1 = 0,(

D0+ 1

ρ̄

)
g2− 1√

2ρ̄
L+1/2g1 = 0,

1r

26
D+1/2g1+ 1√

2ρ̄?

(
L1/2− 1

ρ̄
ia sinθ

)
g2 = 0, (14)

where

Dn = ∂r − ik

1r
+ 2n

r − M

1r
,

D+n = ∂r + ik

1r
+ 2n

r − M

1r
,

Ln = ∂θ − H + cotθ ,
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L+n = ∂θ + H + n cotθ ,

K = (r 2+ a2)ω − am,

H = aω sinθ − m

sinθ
. (15)

Making the following transformation

U1(r, θ ) = ρ̄? f1(r, θ ),

U2(r, θ ) = f2(r, θ ),

V1(r, θ ) = g1(r, θ ),

V2(r, θ ) = ρ̄g2(r, θ ), (16)

(14) becomes

D0U1+ 1√
2
L1/2U2 = 0,

1rD+1/2U2−
√

2L+1/2U2 = 0,

D0V2− 1√
2
L+1/2V1 = 0,

1rD+1/2V1+
√

2L1/2V2 = 0. (17)

Let

U1(r, θ ) = R−1/2(r )S−1/2(θ ),

U2(r, θ ) = R+1/2(r )S+1/2(θ ),

V1(r, θ ) = R+1/2(r )S−1/2(θ ),

V2(r, θ ) = R−1/2(r )S+1/2(θ ). (18)

Having substituted Eqs. (18) into Eqs. (17) and separated the variables, we have

1rD+1/2D0R−1/2− λ2R−1/2 = 0,

D01rD+1/2R+1/2− λ2R+1/2 = 0,

L+1/2L1/2S+1/2+ λ2S+1/2 = 0,

L+1/2L+1/2S−1/2+ λ2S−1/2 = 0, (19)

whereλ2 is the constant of separating variables. Substitution of Eqs. (18) into
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Eqs. (19) gives

1r ∂
2
r R−1/2+ (r − M)∂r R−1/2+

[
K 2

1r
− 2iωr + i K

r − M

1r
− λ2

]
R−1/2 = 0.

(20)

1r ∂
2
r R+1/2+ 3(r − M)∂r R+1/2+

[
K 2

1r
+ 2iωr

− i K
r − M

1r
− λ2+ 1

]
R+1/2 = 0. (21)

[
1

sinθ
∂θ sinθ ∂θ − m2

sin2θ
+ λ2

]
S±1/2+

[
1

4
cot2θ ∓ mcosθ

sin2θ
,

− 1

2 sin2θ
∓ aω cosθ − a2ω2 sin2θ + 2amω

]
S±1/2 = 0. (22)

3. THE FERMIONIC ENTROPY

Because the Dirac wave function has four components and the entropy is
equal to the sum of the entropies of every component, to obtain the entropy of
Dirac field, we have to calculate the entropy of its every component and then add
them together. First, let us calculate the entropy of theF1 component. Using brick-
wall model, and assuming that the wave function vanishes near horizon within a
range ofh (h is a positive infinite decimal), that is,

F1(r ) = 0 (23)

when r ≤ r+ + h, the wave function would also vanish away from horizonL,
that is,

F1(r ) = 0 (24)

whenr ≥ L. r+ = M +√M2− a2 is the event horizon of Kerr black hole,h is
the ultraviolet cutoff factor,L is the ultrared cutoff factor, andL À r+.

The radial componentR−1/2 of F1 satisfies (20).
Let R−1/2 = eiω1(r ), based on the WKB approximation; it follows that

K 2
1 = 1−1

r

[
K 2

1r
− l (l + 1)

]
. (25)

wherek1 = ∂r W1(r ), it is radial wave number.
Suppose that the studied Dirac field is in the vacuum state of Hartle–Hawking

(Hartle and Hawking, 1996), and the temperature of Dirac field is the Hawking
temperatureTH = K

2π = r+−r−
4π (r 2+a2) . According to the canonical ensemble theory,
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the free energy of Fermi system is:

βE1 = −6 ln(1+ e−βω), (26)

whereβ is the inverse of Hawking temperature. In a semiclassical treatment, the
visible energy state is continuous distribution, and the sum can be changed to
integration: ∑

ω

−→
∫ ∞

0
dω g(ω), (27)

whereg(ω) is the state density,g(ω) = d0(ω)
dω , 0(ω) is the microcosmic state num-

ber, that is,

0(ω) =
∑
l ,m

nr (ω, l , m), (28)

wherenr is a nonnegative integer number, and

nrπ =
∫ L

r++h
K1(r, l , m) dr, (29)

Taking sum for angle quantum number is also treated as integration, and it is
required thatK1(r, l , m) ≥ 0 during integration process, and then we have

0(ω) =
∫

(2l + 1) dl · 1

π

∫
K1 dr, (30)

and the free energy can be expressed as

βE1 = β

π

∫
dl (2l + 1)

∫
dω

(
1+ eβ(ω−mÄ0)

)−1 ·
∫ L

r++h
K1 dr, (31)

whereÄ0 = − gtϕ

gϕϕ
|r=r+ is the rotation angle velocity of Dirac field. It follows that

E1 = − 7π3

180h
· 1

β4
· (r 2
+ + a2)3

(r+ − r−)2
+ 7π3

60hβ4
· am(r 2

+ + a2)2

(r+ − r−)2

− 7π3

60hβ4
· a

2m2(r 2
+ + a2)

(r+ − r−)2
+ 7π3

180hβ4
· a2m3

(r+ − r−)2

+ 9

16π3
· ζ (3)

hβ
· am2Ä0− 9

4π2
· ζ (3)

hβ2
· a2m3Ä0 · 1

r+ − r−

+ 3

π
· ζ (3)

hβ3
· a3m4Ä0 · 1

(r+ − r−)2
+ π

2hβ2
· am3Ä2

0 ·
(r 2
+ + a2)2

(r+ − r−)2

− π

2hβ2
· a2m4Ä2

0 ·
r 2
+ + a2

(r+ − r−)2
+ π

6hβ2
· a3m5Ä2

0 ·
1

(r+ − r−)2
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+ 2

π

1

hβ
· ζ (1) · am4Ä3

0 ·
(r 2
+ + a2)2

(r+ − r−)2
− 2

π

1

hβ
· ζ (1) · a2m5Ä3

0 ·
r 2
+ + a2

(r+ + r−)2

+ 2

3π

1

hβ
· ζ (1) · a3m6Ä3

0 ·
1

(r+ − r−)2
− 3

π

1

hβ3
· ζ (3) ·mÄ0 ·

(r 2
+ + a2)3

(r+ − r−)2

− π

6hβ2
·m2Ä2

0 ·
(r 2
+ + a2)3

(r+ − r−)2
− 2

3π

1

hβ
· ζ (1) ·m3Ä3

0 ·
(r 2
+ + a2)3

(r+ − r−)2
. (32)

Using the relationship between free energy and entropy

S= β2∂E

∂β
, (33)

and taking the ultraviolet cutoff factorh = T+
90 (’tHooft, 1985), the entropy becomes

S1 = 7

8

Ah

4
+ O(ζ (1))+ finite. (34)

whereζ (n) is the Riemannζ function, Ah = 4π (r 2+ a2) is the area of event
horizon.

In the following, we calculate the entropy forF2 component making use of
brick-wall model and taking the same cutoff factor described above, that is, when
r ≤ r+ + h, r ≥ L À r+, it is required that

F2 = 0. (35)

Because the radial componentR+1/2 of F2 satisfies Eq. (21), in the same way we
may letR+1/2 = eiω2(r ), and then substitute it into Eq. (21), and having used WKB
approximation, we have

K 2
2(r ) = 1−1

[
K 2

1
− l (l + 1)+ 1

]
. (36)

whereK2 = ∂r W2(r ) is the radial wave function. From this, the free energy cor-
responding toF2 is

βE2 = −β
π

∫
dl (2l + 1)

∫
dω

(
1+ eβ(ω−mÄ0)

)−1
∫ L

r++h
K2 dr · (37)

Calculating (37), we have found that there is the same expression forE2

andE1.
Using (33) and takingh = T+

90 , the entropy becomes

S2 = 7

8
· Ah

4
+ O(ζ (1))+ finite. (38)

In the same way, we can calculate the entropies ofG1 and G2 respectively. It
follows that the free energy and entropy ofG1 andG2 are respectively equal to
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the ones ofF1 andF2, so the Fermi entropy in Kerr black hole background is:

S=
∑

j

Sj = 7

2
· Ah

4
+ O(ζ (1))+ finite. (39)

4. DISCUSSION AND CONCLUSION

Whena = 0, it follows thatÄ0 = 0. Because there are factors ofa andÄ0

for the second and third terms in (39), so whena = 0, the second and third terms
are all equal to zero, and only the first term72

Ah

4 remains for (39). The first term
7
2

Ah

4 of (39) is just that of Fermi entropy of Schwarzschild black hole; it is equal
to the Bose entropy multiplied by72 of Schwarzschild black hole. This conclusion
is consistent with the one obtained by functional analysis in de Alwis and Ohta
(1995).

Thus for the general Kerr black hole, the expression for fermionic entropy is

S= 7

2
· Ah

4
+ O(ζ (1))+ finite.

This conclusion can be extended to Kerr-Newman black hole and Kerr–
Newman–Kasuya black hole.
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